Duality Properties of Indicatrices of Knots
نویسنده
چکیده
The bridge index and superbridge index of a knot are important invariants in knot theory. We define the bridge map of a knot conformation, which is closely related to these two invariants, and interpret it in terms of the tangent indicatrix of the knot conformation. Using the concepts of dual and derivative curves of spherical curves as introduced by Arnold, we show that the graph of the bridge map is the union of the binormal indicatrix, its antipodal curve, and some number of great circles. Similarly, we define the inflection map of a knot conformation, interpret it in terms of the binormal indicatrix, and express its graph in terms of the tangent indicatrix. This duality relationship is also studied for another dual pair of curves, the normal and Darboux indicatrices of a knot conformation. The analogous concepts are defined and results are derived for stick knots.
منابع مشابه
تأثیر نوع گره بر خواص فیزیکی فرش: ضخامت کف فرش، ارتفاع پرز و طول فرش
Symmetric and asymmetric knots, as two original knots, possess different physical and mechanical properties that influence the function of a carpet. Jufti and U knots give different properties to the carpet compared to the original ones. If they were used to produce specific properties, they would enhance the carpet's quality. However, nowadays their applications are considered as methods that ...
متن کاملSOME PROPERTIES FOR FUZZY CHANCE CONSTRAINED PROGRAMMING
Convexity theory and duality theory are important issues in math- ematical programming. Within the framework of credibility theory, this paper rst introduces the concept of convex fuzzy variables and some basic criteria. Furthermore, a convexity theorem for fuzzy chance constrained programming is proved by adding some convexity conditions on the objective and constraint functions. Finally,...
متن کاملSome properties of analytic functions related with bounded positive real part
In this paper, we define new subclass of analytic functions related with bounded positive real part, and coefficients estimates, duality and neighborhood are considered.
متن کاملOn duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules
In this paper, we investigate duality of modular g-Riesz bases and g-Riesz bases in Hilbert C*-modules. First we give some characterization of g-Riesz bases in Hilbert C*-modules, by using properties of operator theory. Next, we characterize the duals of a given g-Riesz basis in Hilbert C*-module. In addition, we obtain sufficient and necessary condition for a dual of a g-Riesz basis to be agai...
متن کاملCould one generalize braid invariant defined by vacuum expectation of Wilson loop to an invariant of braid cobordisms and of 2-knots?
5 TGD inspired theory of braid cobordisms and 2-knots 7 5.1 Weak form of electric-magnetic duality and duality of space-like and time-like braidings 7 5.2 Could Kähler magnetic fluxes define invariants of braid cobordisms? . . . . . . . . . . 8 5.3 Classical color gauge fields and their generalizations define gerbe gauge potentials allowing to replace Wilson loops with Wilson sheets . . . . . ....
متن کامل